
International Planning Competition 2023 - Planner Abstract

OptiPlan - a CSP-based partial order HTN planner

Oleksandr Firsov Humbert Fiorino Damien Pellier
Univ. Grenoble Alpes - LIG

Grenoble, France
oleksandr.firsov humber.fiorino damien.pellier @univ-grenoble-alpes.fr

Introduction
In this paper, we introduce OptiPlan, a planner that partic-
ipated in partial-order HTN track of IPC 2023. OptiPlan is
a hierarchical planner capable of solving partial-order prob-
lems by encoding them as CSPs [1] and generating partial
order solution plans.

Encoding resolution techniques, particularly SAT encod-
ings, have proved their worth in various IPC competitions.
Solving HTN problems via CSP was little studied [2] com-
pared to SAT [3]. These techniques, however, offer a num-
ber of advantages over SAT: (1) CSP encoding provides
a natural way of expressing numerical constraints, which
is not possible with SAT; (2) CSP encoding lets naturally
express constraints on method decompositions (logical or
numerical) and (3) CSP techniques are much more ma-
ture than SAT, and are covered my multiple industrial-level
solvers[4].

The most distinct, property of OptiPlan is its capability
to produce partial-ordered solution plans. The reasoning be-
hind this feature is twofold. First, in various contexts, of-
tentimes industrial, it is crucial to make plans as flexible as
possible, as it helps anticipate unforeseeable events [5][6].
A natural answer to this are partial-ordered solutions, which
allow shifting tasks without any impact on the quality of
the plan. Second, unlike deordering of total-order plans [7]
which cannot guarantee quality, or optimality, of the pro-
duced plans, OptiPlan can guarantee these properties.

Optiplan Principle
OptiPlan is based upon Task Decomposition Graph (TDG)
[8] structure and hybrid planning formalization [9], which
combines the concepts of HTN with POCL [10]. The differ-
ence being that our search space is a tree, instead of graph,
where:
• OR nodes represent possible method decompositions
• AND nodes represent abstract and primitive tasks

Only tasks can be leaves, and only primitive tasks are con-
sidered terminal leaves.

Constructing a complete search space is infeasible in
HTN planning[11], so OptiPlan operates using an iterative
deepening search. Initially, our tree consists of an artificial
root and its children: abstract tasks of initial HTN, as well

Figure 1: Example of TDG compression

as dummy primitive tasks t0 and t∞, that correspond to the
initial and goal states. Along with the tree, we keep track of
ordering constraints introduced by initial task network and
method decompositions.

In this search space, we attempt to find a subtree, such
that:

1. It has exclusively terminal leaves (i.e., plan is concrete)
2. Every precondition of the subtree has a causal link sup-

porting it (i.e., no open goals)
3. There are no threats on the causal links
4. There are no conflicting ordering constraints

If a solution can’t be found, it means that the search space
is not big enough to support it. So we update the search space
by expanding the non-terminal leaves of the tree, and try to
solve the problem again. This process is repeated until either
a solution is found, or failure termination conditions are met
(e.g., there are no abstract leaves left), in which case problem
is deemed unsolvable.

Implementation
As our planner requires a grounded instance of the problem,
we use PDDL4J[12] to parse, pre-process, and instantiate it.

To fully benefit from numeric variables, we perform a
compression procedure on the tree, where we attempt to
merge mutex nodes from the same depth level into a sin-
gle node. This can be best explained on a simple example
in Fig. 1, where we compress two methods m1, m2 of an
abstract task a.

To find the solution, OptiPlan uses Chuffed[13] as its CSP
solver.

1



References
[1] S. C. Brailsford, C. N. Potts, and B. M. Smith,

“Constraint satisfaction problems: Algorithms and
applications,” European Journal of Operational
Research, vol. 119, no. 3, pp. 557–581, 1999.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221798003646

[2] P. Surynek and R. Barták, “Encoding htn planning as a
dynamic csp,” in Principles and Practice of Constraint
Programming-CP 2005: 11th International Confer-
ence, CP 2005, Sitges, Spain, October 1-5, 2005. Pro-
ceedings 11. Springer, 2005, pp. 868–868.

[3] I. Georgievski and M. Aiello, “Htn planning:
Overview, comparison, and beyond,” Artificial Intelli-
gence, vol. 222, pp. 124–156, 2015.

[4] J.-F. Puget, “Constraint programming next challenge:
Simplicity of use,” in Principles and Practice of
Constraint Programming–CP 2004: 10th International
Conference, CP 2004, Toronto, Canada, September
27-October 1, 2004. Proceedings 10. Springer, 2004,
pp. 5–8.

[5] D. Liu, H. Wang, C. Qi, P. Zhao, and J. Wang, “Hier-
archical task network-based emergency task planning
with incomplete information, concurrency and uncer-
tain duration,” Knowledge-Based Systems, vol. 112,
pp. 67–79, 2016.

[6] D. Liu, H. Li, J. Wong, and M. Khallaf, “Hierarchi-
cal task network approach for time and budget con-
strained construction project planning,” Technological
and Economic Development of Economy, vol. 25, pp.
1–24, 04 2019.

[7] C. Muise, S. McIlraith, and C. Beck, “Optimally relax-
ing partial-order plans with maxsat,” in Proceedings of
the International Conference on Automated Planning
and Scheduling, vol. 22, 2012, pp. 358–362.

[8] P. Bercher, G. Behnke, D. Höller, and S. Biundo, “An
admissible htn planning heuristic.” in IJCAI, 2017, pp.
480–488.

[9] S. Biundo and B. Schattenberg, “From abstract crisis
to concrete relief—a preliminary report on combining
state abstraction and htn planning,” in Sixth European
Conference on Planning, 2001.

[10] D. McAllester and D. Rosenblatt, “Systematic nonlin-
ear planning,” 1991.

[11] R. Alford, V. Shivashankar, U. Kuter, and D. Nau, “Htn
problem spaces: Structure, algorithms, termination,” in
Proceedings of the International Symposium on Com-
binatorial Search, vol. 3, no. 1, 2012, pp. 2–9.

[12] D. Pellier and H. Fiorino, “Pddl4j: a planning domain
description library for java,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 30, no. 1, pp.
143–176, 2018.

[13] G. Chu, P. J. Stuckey, A. Schutt, T. Ehlers, G. Gange,
and K. Francis. (2016) Chuffed, a lazy clause genera-
tion solver. https://github.com/chuffed/chuffed.

2


